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Abstract

This paper presents numerical solutions for the transient natural convection heat transfer by double diffusion from a heated cylin
in a saturated porous medium where both, the cylinder and the medium surfaces, are kept at constant uniform temperature and co
This situation occurs, for instance, in buried electrical cables, where the ground is the main responsible for the dissipation of heat ge
the electrical cable, where in many cases the cable surface temperature may reach a dangerous limit in a very short time, even bef
state is attained. Governing equations are expressed in bi-polar coordinates in the stream function formulation and handled num
a control volume method. Heat and mass transfer are studied as a function of Rayleigh, Lewis and the buoyancy ratio numbers.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Many transport processes presented in the environm
occur due to the flow off with a simultaneous occurren
of temperature and concentration gradients. Some oce
graphic phenomena like the salt sources are explaine
the coupled presence of thermal gradients and saline. T
is also an explanation for the dissemination control of p
lutants contaminators proceeding from chemical indus
refuse replaceable places and radioactive waste that s
the problem in the area of radioactive spreading out in
ground, in water contamination and in other correlates
still ask for solution [1].

In literature is found some works to solve heat tra
fer problems in steady state, such as Eckert and Drake
and Di Felice and Bau [3] that present a research a
heat transfer in a pure conductive medium, in the lack
chemical components dissemination; Bau and Sadhal [4
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vestigate the problem of a semi-infinite cylinder in an h
mogeneous medium, with mixture frontier conditions (co
vective), considering an uniform heat transfer coeffici
through the cylinder; Schrock et al. [5] studied, includi
lab experiments, the case of a cylinder buried in a
tain depth of a permeable surface, presenting correla
to the temperature distribution when heat transfer sta
Bau [6] presented analytical solutions to natural convec
in the cases of Rayleigh numbers smaller than 1, wh
the convection is induced by a cylinder heated in a s
rated and permeable porous medium, where both, cyli
and ground, are kept at constant temperature. Fernande
Schrock [7] present correlation with the Nusselt numbe
the case of a cylinder buried in a porous medium satur
with Rayleigh number range between 0.01 and 110. M
et al. [8] present an experimental analysis of heat and m
ture transfer around a heated cylinder surrounded by an
saturated medium applied to high-voltage electrical po
distribution in urban areas which makes use of undergro
cables.

Chaves [9] realized a study about steady natural c

vection promoted by double diffusion in saturated porous
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Nomenclature

a scale factor to bi-polar coordinates
C chemical concentration . . . . . . . . . . . . . . kg·m−3

d cylinder depth at the superior surface . . . . . . . m
D chemical diffusivity . . . . . . . . . . . . . . . . . . . m·s−2

F function defined at Eq. (2a)
g gravity acceleration . . . . . . . . . . . . . . . . . . . m·s−2

G function defined at Eq. (1a)
H function defined at Eq. (1a)
h scale factor
K porous medium permeability . . . . . . . . . . . . . m2

Le Lewis number
N buoyancy ratio number
Nu Nusselt number
r1 buried cylinder radius . . . . . . . . . . . . . . . . . . . . . m
Ra Rayleigh number
Sh Sherwood number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . K,◦C
u,v bi-polar coordinates . . . . . . . . . . . . . . . . . . . . . . m

v1 v coordinates values at the cylinder . . . . . . . . m
V average velocity . . . . . . . . . . . . . . . . . . . . . . m·s−1

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

β coefficient of thermal expansion . . . . . . . .◦C−1

βc coefficient of chemical expansion . . . . m3·kg−1

ν kinetic viscosity . . . . . . . . . . . . . . . . . . . . . m2·s−1

Ψ stream function
µ dynamical viscosity . . . . . . . . . . . . . . . . N·s·m−2

ρ specific mass . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

Subscripts

s surface
u u direction
v v direction
w wall

Superscript

∗ dimensionless parameters
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medium. His study proposes a numerical solution to va
tions of Rayleigh number (0 to 1000), of Lewis number
to 100) and of the buoyancy ratio number (−3 to +3), us-
ing the control volume method idealized by Patankar [1
This method has been widely used and its implementa
to a bi-polar coordinates system was realized. This pap
a continuation of the study realized by Chaves [9] app
to the case of transient natural convection heat transfe
double diffusion from heated cylinders buried in satura
porous medium. The transient study was motivated by s
simplifications realized by Freitas and Prata [11] in the pr
lem of heat and mass transfer around electric cables bu
in porous medium.

This paper aims to present numerical solutions for
problem of transient natural convection heat transfer by d
ble diffusion from a heated cylinder buried in a satura
porous medium, exposed to constant uniform tempera
and concentration in the cylinder and in the medium surfa

The problem occurs, for example, in electrical cond
tors when they are buried, where the medium is the m
responsible to take off the heat produced by the elect
conductor, through Joule effect. If this medium is no a
to take off enough heat, the temperature in the cable su
increases and the electric insulation can be injured. M
times the temperature in the cable’s surface can rise up
fast to a dangerous level, even before the process reach
steady state. The situation characterizes a problem of
pled heat and mass transfer, in transient regime, in satu
porous medium.

In a future step, it will study a case analyzed by Fre

and Prata [11], comparing to its own results.
e
-

2. Proposition

Consider an infinite cylinder buried in a saturated por
medium. The cylinder has a radiusr1 and is buried ind depth
from the porous medium superior surface. The cylinder o
side cover is kept atTW temperature and atCW concentra-
tion, while the porous medium superior surface is kept aTS

temperature and atCS concentration, according to Fig.
The hypothesis of transient regime and impermeable
are considered as well.

To obtain the equations that describe the problem,
assumed [9] that:

(a) the porous medium and the fluid that saturates it
isotropic and homogeneous, the Boussinesq appr
mation is valid to intensities variation due to chang
in both temperature and concentration. It is possi
this way, to express the specific mass according to
jan [12]:

ρ = ρ0
[
1− β(T − T0) − βc(C − C0)

]
(1)

whereβ andβc are the coefficients of thermal and che
ical expansion, respectively defined by

β = −1

ρ0

(
∂ρ

∂T

)
p

(2)

βc = −1
(

∂ρ
)

(3)

ρ0 ∂C p
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Fig. 1. Bi-polar coordinates system.

(b) Darcy law is assumed to describe the fluid flow in por
medium, this way, by Bird et al. [13] is possible to rea
the expression(

µ

K

)
∇ × �V = −(∇ρ) × ḡ (4)

(c) the porous medium is rigid and the thermodynamics p
prieties (except the density in the buoyancy ratio te
is considered constant,

(d) there are no chemical reactions and the viscous dis
tion are negligible,

(e) the porous medium and the fluid presents thermo
namic equilibrium.

Based on considered hypothesis for Eqs. (1) and (4)
problem governing equations of transient natural conv
tion heat transfer by double diffusion from a heated cy
der buried in a saturated porous medium can be written
transient regimes and incompressible fluids in the form (
jan [12] and Chaves [9]):

Mass conservation:

∇ · �V = 0 (5)

Moment conservation:(
µ

K

)
(∇ × �V ) = −(∇ρ) × ḡ (6)

Energy conservation:

∂T

∂t
+ (�V · ∇)T = α∇2T (7)

Chemical constitution conservation:
∂C

∂t
+ (�V · ∇)C = D∇2C (8)

To bi-polar coordinates, in the stream function formulatio

Moment conservation:

∂2Ψ

∂u2
+ ∂2Ψ

∂v2
= K · aρ0g

µ

[
H

(
β

∂T

∂u
+ βc

∂C

∂u

)
(

∂T ∂C
)]
+ G β
∂v

+ βc
∂v

(9)
-

where

H = 1− cosucoshv

(coshv − cosu)2
and

G = sinhv sinu

(coshv − cosu)2
(9a)

Vu = 1

hv

∂Ψ

∂v
, Vv = − 1

hu

∂Ψ

∂u
(9b)

hu = hv = a

(coshv − cosu)
(9c)

Energy conservation:

∂2T

∂u2
+ ∂2T

∂v2

= 1

α
a2F

∂T

∂t
+ 1

α

(
∂Ψ

∂v

∂T

∂u
− ∂Ψ

∂u

∂T

∂v

)
(10)

where

F = 1

(coshv − cosu)2
(10a)

Chemical constitution conservation:

∂2C

∂u2
+ ∂2C

∂v2

= 1

D
a2F

∂C

∂t
+ 1

D

(
∂Ψ

∂v

∂C

∂u
− ∂Ψ

∂u

∂C

∂v

)
(11)

Eqs. (9)–(11) of the natural convection heat transfer by d
ble diffusion in saturated porous mediums problem can
written to transient regime and incompressible fluids in
polar coordinates(u, v) presented on Fig. 1 in dimensionle
terms, in the stream function formulation by:

∇2Ψ ∗ = a∗
[(

H
∂T ∗

∂u∗ + G
∂T ∗

∂v∗

)

+ N

(
H

∂C∗

∂u∗ + G
∂C∗

∂v∗

)]
(12)

where

H = 1− cosu∗ coshv∗

(coshv∗ − cosu∗)2
and

G = sinhv∗ sinu∗

(coshv∗ − cosu∗)2
(12a)

V ∗
u = 1

hv

∂Ψ ∗

∂v∗ , V ∗
v = − 1

hu

∂Ψ ∗

∂u∗ (12b)

hu = hv = a∗

(coshv∗ − cosu∗)
(12c)

∇2T ∗ = (a∗)2F
∂T ∗

∂t∗

+ Ra

(
∂Ψ ∗

∂v∗
∂T ∗

∂u∗ − ∂Ψ ∗

∂u∗
∂T ∗

∂v∗

)
(13)

where

1

F =

(coshv∗ − cosu∗)2
(13a)
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∇2C∗ = (a∗)2F Le
∂C∗

∂t∗

+ Ra Le

(
∂Ψ ∗

∂v∗
∂C∗

∂u∗ − ∂Ψ ∗

∂u∗
∂C∗

∂v∗

)
(14)

where

a∗ = a

r1
= sinhv1 (14a)

d∗ = d

r1
= coshv1 (14b)

T ∗ = T − Ts

Tw − Ts

(14c)

t∗ = α

r2
1

t (14d)

C∗ = C − Cs

Cw − Cs

(14e)

The dimensionless stream function is given by

Ψ ∗ = Ψ

α Ra
(14f)

The buoyancy ratio number is given by

N = βc�C

β�T
(14g)

Le = α

D
(14h)

Ra = Kgβ�T r1

vα
(14i)

�T = Tw − Ts (14j)

�C = Cw − Cs (14k)

3. Methodology

To solve the problem numerically, it integrates Eqs. (1
(14) related tou andv variables, already described in dime
sionless bi-polar coordinates on a generic control volu
Such control volume is described on Fig. 2 and the inte
tion is done following the control volume method formu
tion developed by Patankar [10] where power law is ta
to calculate the flow term through the limits of each inter
control volume. Integrating Eq. (12) in the control volum
V CP on Fig. 2 related to the variablesu andv takes to:
∫ ∫
V Cp

∂2Ψ ∗

∂u2
dudv +

∫ ∫
V Cp

∂2Ψ ∗

∂v2
dudv

= a∗
[∫ ∫

V Cp

H
∂T ∗

∂u
dudv +

∫ ∫
V Cp

G
∂T ∗

∂v
dudv

+ N

(∫ ∫
V Cp

H
∂C∗

∂u
dudv +

∫ ∫
V Cp

G
∂C∗

∂v
dudv

)]
(15)

Accepting the power law, suggested by Patankar [10
calculate the flow terms through the border of each inte

control volume, takes to the equation in the form:
Fig. 2. Typical cell of the control volume method.

ai,jΨ
∗
i,j = ai+1,jΨ

∗
i+1,j + ai−1,jΨ

∗
i−1,j

+ ai,j+1Ψ
∗
i,j+1 + ai,j−1Ψ

∗
i,j−1 + bi,j (16)

with

ai+1,j = �v

(δu)e
(16a)

ai−1,j = �v

(δu)w
(16b)

ai,j+1 = �u

(δv)n
(16c)

ai,j−1 = �u

(δv)s
(16d)

where�u,�v, (δu)w, (δu)e, (δv)ne(δv)s are values repre
sented on Fig. 2.

ai,j = ai+1,j + ai−1,j + ai,j+1 + ai,j−1 (16e)

bi,j = a∗
[
Hi,j

(
�v

2

)(
T ∗

i+1,j − T ∗
i−1,j

)

+ Gi,j

(
�u

2

)(
T ∗

i,j+1 − T ∗
i,j−1

)

+ N.Hi,j

(
�v

2

)(
C∗

i+1,j − C∗
i−1,j

)

+ N.Gi,j

(
�u

2

)(
C∗

i,j+1 − C∗
i,j−1

)]
(16f)

To obtain the equations of chemical constituent and
ergy, it proceeds in a similar way.

For dimensionless terms, in the new coordinate sys
(u, v) is established the following boundary and initial co
ditions, as shown at Fig. 1:

To t∗ = 0, it is,

Ψ ∗ = 0, T ∗ = C∗ = 0 (initial condition) (17a)

To t∗ > 0, it is, u = 0 and
v1 < v � 0�⇒ Ψ ∗ = 0 (17b)
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the
u = π andv1 < v < 0

�⇒ Ψ ∗ = 0,
∂T ∗

∂v
= ∂C∗

∂v
= 0 (17c)

v = v1 and 0� u � π

�⇒ Ψ ∗ = 0, T ∗ = C∗ = 1

(over the buried cylinder) (17d)

v = 0 and 0� u � π

�⇒ Ψ ∗ = 0, T ∗ = C∗ = 0

(over floor surface) (17e)

Boundary conditions, presented at Eq. (17) refers to
flow off domain covering the heated cylinder. The condit
Ψ ∗ = 0 refers to the stagnated fluid. The condition

∂T ∗

∂v
= ∂C∗

∂v
= 0

refers to the mass and fluid absence.
Distinguished equations together with boundary and

tial conditions make a coupled system involving stre
function, temperature and concentration variables. The
merical solution is treated using the Simple Method p
posed by Patankar [10]. To solve this simultaneous m
ematical equations that come from distinguish proces
used line-to-line iterative method.

As initial state is considered the following first appro
imation ψ∗ = 0 andT ∗ = C∗ = 0. To t > 0 is considered
the following first approximationψ∗ = 0 andT ∗ = C∗ = 1
(constant temperature and concentration) for the entire
main.

In each process, interaction there was a need for up
ing ψ∗, T ∗ andC∗ values andψ∗ equation was solved thre
times for each interaction. To reachT ∗ andC∗ values it was
solved only once by iteration. Such process was widely u
ful in cases whereRa andLe are high, that causes strong
convection streams.

The acceptance standard of a solution as converge
based on the maximum error possible inside the whole ca
lation range. The obtained results convergence was acce
when relative changes in the dependent variables were b
1.0× 10−5.

4. Results and discussion

4.1. The case analyzed by Bau [6]

To compare the implemented program for bi-polar co
dinates, it was reproduced the Bau conditions [6]: cylin
radius r1 = 0.25 m; impermeable and isotherm surface
the cylinder; silica floor external to the cylinder (mediu
size of the corn close to 2.54 × 10−4 m) of permeability
6 × 10−11 m2; temperature difference between the cylind
and the floor of 60◦C; water as saturating liquid, with it
properties calculated at 40◦C; cylinder deepness from th

surface floor of 2 m.
d

Table 1
Nusselt as function of time [s] (N = 0, Ra = 10.0,
Le = 1.0)

Time [s] Nusselt

1000 2.80
100 2.80
10 2.81
1 3.52
0.1 4.95
0.01 6.26
0.001 11.74
0.0001 28.11
0.00001 49.05
0.000001 54.31

In this conditions the Rayleigh number wasRa = 10.0
(N = 0, Le = 1.0) and the average Nusselt number over
cylinder, according to the author, was 2.80. This Nus
number was the unique parameter through the analy
solution founded in literature for the comparison. Table
presents the comparison in the transient situation. It is
sible to verify the concordance with the results provided
Bau [6] for long periods of time. From this confirmatio
it numerically simulates the transient condition for seve
Nusselt and Sherwood numbers, which represent the
and mass flows in the region of the cylinder, in function
the Lewis and Rayleigh numbers and buoyancy ratio.

4.2. Nusselt and Sherwood numbers as function of time

Considering the multiplicity of dimensionless groups p
sented in the governing equations and its associated eff
the transient analysis was made sharing the solutions in f
tion of Rayleigh and Lewis numbers and the buoyancy ra
The results presented were divided:

(a) flows controlled by heat (N = 0) what is the class flow
basically dominated by buoyancy due to the heating
the cylinder; and

(b) flow with ascendant buoyancy (N = 1) where the buoy
ancy due to the concentration gradient has more in
ence than the buoyancy coming from the gradient t
perature.

As shown on Figs. 3 and 4 for short periods of time,
results show high heat and mass transfer rates farther
Nusselt and Sherwood numbers. Such facts happen d
the boundary and initial conditions imposed to the bur
cylinder problem. For long periods of time the results sh
trustworthy results as well, since the presented value
Nusselt and Sherwood numbers are stead very close t
values found by Chaves [9] and Bau [6] to the steady st
In the case of flows controlled by heat (N = 0), the Nus-
selt and Sherwood numbers are the same for Lewis num
and equal to 1 and only Nusselt number was presented
possible to notice that on Fig. 2, Nusselt increases with

increasing of Rayleigh and the buoyancy ratioN for each
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Fig. 3. Nusselt number as function of time, forLe = 1.

Fig. 4. Nusselt and Sherwood numbers as function of time (N = 1.0,
Ra = 1.0, Le = 10.0).

time. An increasing of the Rayleigh number from 1 to 1
takes to an increasing of convective effects, this way tak
to high Nusselt and Sherwood numbers, as the conce
tion field is also influenced by the Rayleigh number. In
flows with ascendant buoyancy (N = 1), there are concor
dant buoyancy forces and as consequence, an intensific
of the effects of the natural convection over the flow.

5. Conclusions

The objective of verifying the validity of the implemente
program to transient regime to calculate the Nusselt
-

n

Sherwood to several values of Lewis and Rayleigh nu
bers and the buoyancy ratio was satisfactory concluded.
trustable results obtained to long and short periods of t
to the transient natural convection heat transfer by d
ble diffusion from a heated cylinder buried in a satura
and homogeneous porous medium was satisfactory
ized.

The comparison with [6] to steady flow show that t
transient flow there is a good result when the program is
plied for short and long periods of time, it allows to app
the program in many other practical cases.
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